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Abstract
This paper describes preliminary results and outlines the
plan of attack for an on-going project to develop a prac-
tical system for verifying outsourced computations. We
want a client to be able to describe a computation to a
server, get back a purported output and some auxiliary
information, and use that auxiliary information to verify
that the output is correct. For outsourcing to be worth-
while, the verification process should be substantially
more efficient than simply executing the computation.

Our approach to this problem is to exploit the theory of
probabilistically checkable proofs (PCPs). Specifically,
our project seeks to build a bridge between the theory
and an implementable system. We describe a protocol
for outsourced computation that includes algorithmic re-
finements of the PCP protocol and end-to-end instantia-
tion of the necessary steps (e.g., compilation to a form
suitable for application of the PCP theorem). Although
we are in the process of implementing the protocol and
do not have experimental results, we present a detailed
analysis that provides cause for optimism: our cycle and
memory usage costs strongly suggest that our system will
be useful. We focus on the example of matrix multiplica-
tion, where we show that for large matrices, our method
achieves enormous savings for the client and requires
feasible amounts of bandwidth.

1 Introduction and motivation
This paper describes preliminary results and outlines
the plan of attack for an ongoing project to develop a
practical system for verifying outsourced computations.
Broadly speaking, we are interested in computations
that are too expensive for the client to perform locally,
and do not admit obvious procedures for verifying the
correctness of a purported solution. Such computations
range from complicated numerical algorithms operating
on large matrices (which are polynomial but expensive)
to NP-hard search problems where even the polynomial
time check of the solution is too costly. Furthermore, we
want to make only weak assumptions about the possi-
ble misbehavior of servers: we do not want to rely on
replication methods but instead desire efficiently verifi-
able proofs of correctness.

Specifically, our goal is to realize the following high-
level scheme, depicted in Fig. 1: a client sends a descrip-

tion of a computation, P, to a server (for example, in
the form of a C program); the server executes P and re-
turns the claimed output and some auxiliary information;
the client uses the auxiliary information to verify that
the output is correct; and the verification is substantially
more efficient than simply executing the computation.

As a motivating scenario, consider a computation-
ally limited device that wants to offload processing
to the cloud [14]. For example, a smartphone might
wish to outsource an expensive photographic manip-
ulation for want of computational cycles [17]. How-
ever, the device owner may not be willing to assume
the correctness of the cloud. As another scenario, some
30 projects (Seti@home, Folding@home, the Mersenne
prime search, etc.) use the BOINC software platform [2,
3] to leverage the spare cycles of volunteers’ computers
to perform massive computations that would otherwise
be infeasible. Unfortunately, a problem is that some “vol-
unteers” run modified software that does not compute the
answers correctly [4]. Today, these projects check vol-
unteers’ work by outsourcing the same computation to
multiple hosts, but this approach does not protect against
clients that are colluding or simply buggy. It would be
far preferable if the central project computers could ver-
ify the correctness of a volunteer’s purported answer.

Our approach to this problem is to exploit the remark-
able work on the theory of probabilistically checkable
proofs (PCPs) [7, 16, 20, 32]. The central theorem in
the subject is that any language in NP admits proofs
of membership that can be verified by checking a very
small number of bits in the proof. Naturally, the fact that
PCPs might provide a solution to the precise problem of
verifiable outsourced computing has not been lost on the
theorists working in the area.

However, as they appear in the theoretical literature,
PCPs are not suitable for use in a real system for out-
sourcing: as we explain below in Section 3, the constants
and overhead costs of certain aspects of the protocol
make naive deployment infeasible. Broadly speaking, the
central problem is the fact that the proofs are far too large
to practically transmit or even for the verifier to instanti-
ate. Indeed, the folklore is that PCPs are not really suit-
able for practical systems right now. As a consequence,
there has been a flurry of work that addresses limited and
specific classes of problems [5, 6, 21, 38–40] or makes
strong trusted hardware assumptions [13, 22, 31, 35, 36].
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Figure 1—High-level depiction of verified outsourced compu-
tation. P is the computation, x is the input, y is the purported
output, and p is auxiliary information.

In contrast, our point of departure is to carefully re-
examine the grounds for this skepticism: we want to as-
sess the feasibility of building a bridge between the the-
ory and an implementable system for general purpose
verifiable outsourced computation. We are not the first
to revisit this issue: recently, there have been attempts to
alleviate the costs of generic PCP [8, 20], with a view to-
ward verifiable outsourcing. However, to date they have
not been specified enough to be implementable.

By focusing on practical implementation from end to
end, we have been forced to flesh out the details and grap-
ple with the constraints imposed by a real system. Specif-
ically, our project makes the following contributions:

1. Design and specification. In order to design a prac-
tical system, we have developed a number of refine-
ments to the PCP protocol (discussed in more detail in
Section 3). To be clear, we are not claiming substan-
tial theoretical contributions. Rather, our innovation is
in applying techniques (carefully constructed Merkle
trees, batching, etc.) to reduce proof size and to amor-
tize the cost of encoding problems in a format that is
suitable for the theoretical machinery to apply. Using
these refinements, we specify an end-to-end protocol
for verifiable outsourcing.

2. Feasibility analysis. In Section 4, we perform a de-
tailed analysis of our protocol in the context of ma-
trix multiplication over arbitrary fields, a concrete
problem that is a central primitive for machine learn-
ing and data mining applications, and an example
of a numerical computation that BOINC distributes.
Our results show that for large matrices, our method
achieves enormous savings for the client and requires
feasible amounts of bandwidth.

3. Implementation roadmap. As we are still imple-
menting, we cannot present experimental results.
However, in Section 5 we present a path toward fully
implementing our approach, and extending it to a
broader range of problems. This long-term program
consists both of clearly achievable “get it working”
problems, as well as research questions.

Thus, our results indicate that what seemed like a risky
goal (at least to us) appears to be plausible. If we’re right,
then this opens the door to practical use of PCPs, which
would be important for real networked systems, includ-
ing classic distributed systems and data centers.

2 Related work

This section describes prior work on verifiable out-
sourced computations. We begin with work that shares
our top-level summary: PCPs to verify computations.

PCPs to verify computations. Babai et al. give a pro-
tocol to verify computations in polylogarithmic time us-
ing PCPs [8], inspired by [11]. Goldwasser et al. [20]
sketch a protocol based on interactive proofs to dele-
gate computations; their scheme is asymptotically effi-
cient for the prover and the verifier. Unfortunately, these
papers do not specify the schemes sufficiently for their
practical viability to be clear; notably, the constants that
would be associated with actual reification of the pro-
tocols are unknown. Indeed, as mentioned in the intro-
duction, one of our purposes here is to make the case
for practical viability by carefully tracing through the re-
quired costs of a concrete and fully-specified protocol.

Secure multi-party computation. Another approach
to verifiable outsourcing comes from secure multi-party
computations. In such protocols, two (or more) mutually
untrusting parties can compute an agreed-upon function
of private data in a way that reveals publicly only the
result, keeping the private data secret [10, 12, 19, 42].
By themselves, these protocols do not provide verifiable
outsourced computations. However, Gennaro et al. [17]
combine Yao’s construction with Gentry’s breakthrough
results on homomorphic encryption [18] to provide ver-
ifiable non-interactive computing. Their construction is
asymptotically efficient (in that it runs in polynomial
time), but it inherits from Gentry’s scheme, which is not
yet practical to implement at scale on today’s computers.

Even when considering only the secure multi-party
protocols, the costs of expressing general computations
in terms of Yao’s garbled circuit constructions and the
attendant oblivious transfer protocols are prohibitive.
Indeed, the Fairplay system [9, 27] combines Yao’s
construction with innovative compilation techniques to
transform programs written in a subset of C into secure
multi-party computations. But Fairplay, although a tech-
nical tour de force, is essentially unusable for even rela-
tively small problem instances. Although there have been
subsequent refinements of Fairplay, the situation has not
qualitatively improved (see [34] for a concrete discussion
of the costs of Fairplay and its descendants in the context
of computing the intersection of two sets).

Special-purpose protocols. As mentioned above, a
number of works verify outsourced computations but
are tailored to specific problem domains and encom-
pass a circumscribed range of functions, e.g., database
queries [39, 40], benchmarks [5], and linear algebra op-
erations [6, 21]. In contrast, our ultimate goal is a proto-
col that supports functions encoded as C programs.

Trusted computing. Some work assumes trusted
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components on the prover: a trusted platform module
(TPM), secure hardware token, hypervisor, or runtime
platform [13, 22, 26, 29, 31, 35–37]. These assumptions
do not hold in all environments; we want any computer
to be able to be a prover.

Auditing. In some works, the verifier reruns the out-
sourced computation on a fraction of the input [31, 41].
This does not protect against an adversary that misreports
a small number of strategic outputs and evades the audit.
PCPs, in contrast, spread the entire output over the proof,
so that even small deviations between the purported out-
put and the correct answer break the proof. Another au-
diting approach is for the verifier to outsource the same
computation to multiple machines [2]. However, this ap-
proach assumes that a majority of the provers are both
bug-free and honest. We would prefer not to make such
assumptions. Finally, Pioneer [38] audits an untrusted
worker machine based on the time taken to perform a
computation. This technique needs detailed knowledge
of the worker’s hardware; as mentioned above, we would
like to avoid assumptions about the prover’s platform.

3 Approach
In this section, we give an overview of our approach, and
then discuss refinements. Our core PCP machinery fol-
lows a construction in [7]; the details of this construction
are in Appendix C. Below, we use verifier to mean the en-
tity that describes the computation and verifies the proof,
and prover to mean the entity that executes the computa-
tion and issues the proof.

3.1 Overview

We begin with a seemingly trivial observation: if the
prover gave the verifier a complete execution trace of
the desired computation, including both the input and
the output, and if the output in the trace were precisely
the claimed output, then that execution trace would con-
stitute a proof to the verifier that the computation was
carried out correctly. Of course, verifying and receiving
this execution trace would require more work than sim-
ply executing the computation. Thus, we need a way for
the prover to issue a proof to the verifier but with the ver-
ifier able to check the proof by inspecting it in only a few
places. This structure is precisely what PCPs enable.

We now give brief background on PCPs. Many of
the PCP constructions in the literature (see [7, 32] and
citations therein) concern 3-SAT: they allow a prover
to prove that a given Boolean formula, φ, in 3-CNF
has a satisfying assignment. (A 3-CNF Boolean formula
contains True-or-False Boolean literals b1, . . . , bn, and
is a conjunction of clauses of the form, for example,
bi∨ b̄j∨bk. A satisfying assignment is a setting of each of
the bi to True or False such that every clause, and hence
the entire formula, evaluates to True.) Of course, the as-

signment itself, ~a, constitutes an (obvious) proof that φ
has a satisfying assignment: the verifier could plug in ~a
in every clause in φ.

The surprising content of the PCP theorem, however,
is that in fact we can construct a compact proof that can
be verified with arbitrarily high probability by inspecting
a relatively small number of (randomly chosen) bits. In
the case of 3-SAT, the PCP is a highly redundant encod-
ing of ~a that spreads the information content of ~a over
the entire proof. As a result, given φ, the verifier can
check just a few bits in the PCP to be convinced (with
a bounded error probability) that φ is satisfiable.

We now connect PCPs to the intuition above about
execution traces. Consider the representation of P as a
Boolean circuit, CP. A Boolean circuit is a set of inter-
connected gates, each of which has input wires and an
output wire. P’s input, x, will appear as values assigned
to the input wires of some of the “early stage” gates of
CP, and likewise P’s output, y, will appear as the values
of the output wires from “late stage” gates of CP. More
generally, a True-False assignment to all of the wires in
CP is precisely an execution trace of P. Also, CP, a col-
lection of Boolean literals, is equivalent to some Boolean
formula, φP, in 3-CNF. Thus, a satisfying assignment to
φP, ~aP, is a valid execution trace of P.1 Moreover, ~aP

includes literals that correspond to x and y.
At this point, we are ready to apply PCPs: given φP,

the prover issues a PCP that φP is satisfiable. Then the
verifier carries out the following steps:

S1 The verifier inspects the PCP in a few places to check
its validity; by the equivalence above, this establishes
that the prover has a valid execution trace for P.

S2 The verifier must establish that the execution trace is
based on the supplied input, x. But an assignment to
the “input literals” is encoded in ~aP, and the verifier
can (using a small number of random queries) check
whether these literals match x.

S3 The verifier must now extract the output of the execu-
tion trace, y; this proceeds in the same fashion as the
previous step.

(Note that this is a randomized protocol, and there is a
probability of error in this process, but as usual it can be
made arbitrarily small by repetition; see §4.)

The work of our project is to refine the approach in
several ways, as described in the rest of this section:
• How can we avoid the entire (huge) proof passing

from prover to verifier? (§3.2.)
• Given P, writing down φP is as expensive as sim-

ply executing P, which seems to defeat the purpose

1The observation that a program’s execution can be encoded as a
satisfiability instance is at the heart of Cook’s proof that satisfiability is
NP-complete [15].

3



of outsourcing. Thus, how can we amortize and mit-
igate this cost, or at least avoid the verifier incurring
it? (§3.3.)

• How can the verifier efficiently extract only the output
literals from the proof? (§3.4.)

• How exactly can we go from a high-level description
of a computation, P, into a 3-CNF representation, φP?
Here, we do not innovate but just report our proposed
approach, and why it ought to be practical. (§3.5.)

3.2 Reducing network costs

As so far described, the protocol requires the verifier to
sink a proof that is polynomial in the number of literals
of the Boolean formula. To drastically reduce network
costs, the prover can commit to a digest of the proof.
For each location in the proof that the verifier wants to
inspect, it interactively queries the prover. The prover’s
responses must be consistent with the digest.

Although this high-level idea seems straightforward,
implementing it efficiently in our context requires some
care. Below, we describe four successive modifications,
each reducing network costs.

First, as Kilian [24, 25] suggests, the prover encodes
the PCP as a Merkle tree [30]; the digest is the tree’s root.
Specifically, each leaf in the tree is a collision-resistant
hash of some portion of the proof and the interior nodes
are collision-resistant hashes of their children. To inspect
a location, l, in the PCP, the verifier submits l to the
prover. The prover not only responds with the contents of
l but also produces a path through the tree that proves that
the contents were an input to the original digest. While
this core idea is helpful, it was proposed in the context
of generic PCP, rather than our specific scenario of veri-
fying outsourced computation. In our scenario, steps S2
and S3 require the verifier to retrieve all of the input and
output literals, which, naively, would require an interac-
tion for each literal, which would be infeasible.

Thus, our second modification is to rearrange the
Merkle tree so that the input literals are covered by a sin-
gle leaf; we do likewise with the output literals. Now,
retrieving the prover’s claimed values for the input lit-
erals requires one invocation of the interactive protocol,
and likewise retrieving y. To further reduce the costs, ob-
serve that the verifier begins with x, so step S2 consists
only of the verifier checking that the hash of x was an
input to the digest; x itself need no longer travel.

Third, observe that the verifier doesn’t even have to
have x in hand; all that step S2 really requires is knowl-
edge of the hash of x. This observation offers significant
network and memory gains to the verifier: now computa-
tions can be outsourced even when the verifier does not
know the input, as might be the case for, say, a large data
mining application. Of course, applying this insight re-

quires a way for the verifier to receive the hash of the
input from a source that it trusts, out of band.

Fourth, sometimes in step S1, the verifier randomly
chooses to inspect the proof locations that contain the
input literals. In those cases, given our current Merkle
tree structure, the prover must send the full input to the
verifier. This step could be costly. To make it cheaper, our
final modification is to change the leaf node that covers
the input literals from a flat hash of x to a Merkle tree
encoding of x (and the out of band hash follows suit).

3.3 Amortizing setup costs

For any computation P, writing down a Boolean cir-
cuit equivalent to P, and hence writing down the 3-CNF
Boolean formula φP, takes as much time as executing P
and at least as much space (likely more). Thus, for out-
sourcing to be worthwhile, the verifier must be able to
amortize these costs, and ideally avoid them altogether.
Below we describe three ways that the verifier can do so.

First, if the verifier will verify the same computa-
tion with different inputs (as in the BOINC [2] exam-
ples given in the introduction), it can “reuse” φP, thereby
amortizing the work to realize φP. This observation is
not totally trivial: the reuse works because the PCP con-
struction that we use (see Appendix C and [7]) allows the
verifier to conduct verification based only on the PCP,
on x, and on values that can be quickly computed from
φP. (Simplifying slightly, these values are derived by en-
coding φP as a polynomial gφP , choosing some random
values {r} and then returning {gφP(r)}.) Thus, with our
protocol, the verifier would incur a time cost equivalent
to executing P once but thereafter save work, since veri-
fication is far cheaper than executing P.

Second, we need to save the verifier space: φP is likely
larger than the scratch space that the verifier would have
needed to execute P. As an example, for m × m matrix
multiplication, discussed in detail in §4.1, the size of φP

is proportional to m3 while the space to simply execute P
is proportional to m2.

To save the verifier space, we observe that the veri-
fier doesn’t need to retain φP, provided it has access to a
small set {gφP(r)}, for random values of r; we call this
set a fingerprint of φP. Thus, consider this scenario: a
verifier (e.g., a BOINC project) pays the time cost once
to realize φP. Then, the verifier pre-computes gφP at ev-
ery point in its domain (which costs time that is low-
degree polynomial in the size of φP). The verifier then
constructs a Merkle tree of these values, stores the value
of the root node locally, and stores the pre-computed gφP

values in a cloud storage service [1]. Now the verifier can
throw away φP, and verification requires little space: the
verifier simply retrieves randomly selected gφP values as
needed. The verifier is protected against the storage ser-
vice returning bogus values because the verifier knows
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the digest of the gφP values.
Our third approach is to remove even the time and

space cost of briefly materializing φP. The simple ob-
servation is that the verifier never needs to handle φP, if
it can get a valid fingerprint from a source that it trusts
(e.g., a registry mapping known P to pre-computed gφP ).

3.4 Extracting the inputs and outputs

A feature of the version of the PCP protocol that we
use is that the input and output literals can be easily
extracted from a particular location in the proof essen-
tially in plaintext. In order to protect against a malicious
prover, of course we cannot exploit this fact and must
instead use a more involved protocol to coalesce the val-
ues of the input and output literals from random queries
of the proof. However, for the purpose of the analysis in
this paper, we assume a threat model in which the prover
is unreliable but not malicious. That is, we assume that
attacks in which the proof is generated correctly and is
accepted by the verifier but has corrupted “naive” output
literals do not occur. In work in progress, we are devel-
oping efficient schemes to remove this restriction (§5).

3.5 Converting programs into 3-CNF

So far, we have been assuming that some entity (the veri-
fier or its delegate) can, given a description of P in a high-
level language, realize φP, a Boolean formula in 3-CNF.
We now discuss the methods by which this can be ac-
complished and the costs. We describe the work as being
done by the verifier, even though, as mentioned above,
the work might be done by a delegate.

At a high level, the main problem is to go from P to the
circuit CP. (To go from CP to φP is the easy part: by fol-
lowing established techniques [28], the verifier can trans-
form CP into a 3-CNF formula that has no more than five
times as many clauses and five times as many literals as
CP has gates [28].)

To generate CP, one possibility is that the verifier can
produce the circuit by hand. This is not as ridiculous as
it sounds, especially for the types of linear algebra appli-
cations that are our initial target applications; indeed, in
Section 4, we do precisely such a compilation by hand.
It is tractable in part because the loop structure of matrix
multiplication is so straightforward that unrolling it into
a circuit is easy. More generally, there are many compu-
tations that can be expressed as Boolean circuits.

However, a major goal of our project is to out-
source computations expressed in a restricted subset of a
general-purpose programming language, like C. A start-
ing point for our work (in progress) in this area is the
innovative compiler module in the Fairplay [27] project;
it uses SSA to produce efficient circuits from a subset
of C. (Note that the tremendous inefficiencies in Fair-
play come from the oblivious transfer protocol and con-
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Figure 2—Upper bounds on the verifier’s cost—in terms of
number of multiplication, addition, and collision-resistant hash
operations, and bits transferred over the network between the
verifier and the prover—for a Boolean formula with n literals.
δ is set to 10−4 to get the error probability described in §4.1, s is
the size in bits of a collision-resistant hash, and i and o are the
respective sizes in bits of the input and output. The functions
are polylogarithmic in the size of the computation; the work
done by the verifier and the network resources consumed grow
much slower than the size of the computation.

sequent restrictions on optimization of the circuits.) We
hope to concurrently refine our protocol and the compiler
to extend our techniques to programs of reasonable size.

4 Analysis and suitability
This section gives a detailed analysis of the cost to the
verifier of executing our protocol, focusing on the run-
ning example of matrix multiplication over a field. We
answer two high level questions here: (1) What are the
verification costs (§4.1)? (2) What class of computations
are likely to result in a cheaper verification relative to just
executing the computation locally (§4.2)?

4.1 Analysis

We first estimate the protocol’s costs in terms of n, the
number of literals in φP, and then apply these estimates
to a specific computation and accompanying Boolean
formula: matrix multiplication. We count the operations
performed by the verifier and determine the network
costs. (We do not include the costs of compiling or stor-
ing φP, which we expect to be amortized.) Exact counts
are in Appendix D; simpler loose upper bounds are in
Figure 2. All of these costs are polylogarithmic in n, so
grow much slower than the size of the computation. The
counts incorporate a term γ, which is specified so that the
error probability—the probability that a correctly func-
tioning verifier accepts an incorrect output—is at most
1

2γ . The counts also include hash operations, which come
from the constructions described in §3.2.

We now estimate the cost of verifying the computa-
tion of “m×m matrix multiplication with 32-bit entries”.
Call this computation M. To apply the counts above,
we must determine n for the 3-CNF Boolean formula
φM. We assume, naively, m3 32-bit combinatorial mul-
tiplier circuits and (m − 1)m2 32-bit adder circuits. As
derived in Appendix A, a loose upper bound on n is
34784m3 + 1120m2(m − 1). Taking this value of n in
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Computation (count) N/W (MB) Storage
m Setup Mult+Add Hash (M) Proof I/O Disk (MB)

103 B 2.00×109 - - - 11
103 O 0.26×109 47 986 11 11

104 B 2.00×1012 - - - 1144
104 O 0.38×109 54 1153 1144 1144

105 B 2.00×1015 - - - 114,440
105 O 0.49×109 62 1336 114,440 114,440

106 B 2.00×1018 - - - 11,444,091
106 O 0.68×109 75 1661 11,444,091 11,444,091

Figure 3— Relative costs of performing matrix multiplication
on m × m matrices. B is Baseline, O is our scheme, Mult is
Multiplication, Add is addition, Hash is the number of hash
operations in millions, I/O is input and output costs. Note that
as the size of the input grows, the size of the proof sent over the
network becomes insignificant relative to the input size.

the exact counts, we get the estimates in Figure 3, for
different m. (We take s = 160 and γ = 1; to drive the
error probability to 1

2γ , we must multiply the reported
costs by γ). The figure also compares the costs to the
baseline case of executing the computation locally. The
savings in computation are enormous. There is some net-
work cost relative to local computation, but, as the matrix
size grows, this network cost is dwarfed by the network
resources required to send the input and receive the out-
put. Moreover, any outsourcing scheme would have to
pay this input/output network cost.

4.2 Suitability

In our scheme, the cost of verification is polylogarithmic
in the size of the computation (Figure 2) and the con-
stants are small. Therefore, a verifier using our scheme
will save work by outsourcing the computation when the
local costs grow faster than this (e.g., the local costs are
polynomial). We should note that in the simplified pro-
tocol we study here, we also depend on a compact rep-
resentation as a Boolean circuit. As discussed in the next
section, in future work we plan to relax this requirement.

However, there are many computations that meet these
requirements already: various linear algebra operations,
string pattern matching (as in a virus checker), context-
free parsing, etc.

5 Research agenda
In this section, we outline our program for producing a
practical system for verifiable outsourced computation.

Circuit generation. One of our goals is to work with
arbitrary computations expressed in C, which requires
making it feasible to compile such computations into
concise formulas. §3.5 described our plans here.

Efficiency for the prover. We have so far focused on
the verifier’s efficiency. The computational burden on the
prover is heavier. We are investigating protocol refine-
ments to improve this.

Batching. If a verifier outsources multiple computa-
tions at once, then the verifier can save significant re-
sources by batching: the prover generates a single proof
for all the computations, instead of separate proofs for
each. We are investigating modifying the verifier’s proto-
col accordingly. In particular, the verifier should be able
to use the formula or fingerprint of the single instance of
the computation to obtain the fingerprint of the batch.

Using more efficient PCP constructions. There are
constructions in the literature in which the verifier in-
spects O(1) bits instead of O(log4 n) [33] (where n is the
number of literals in the Boolean formula).

A more expansive threat model. We are developing
efficient ways to remove the assumptions we made about
extracting the output literals from the proof (§3.4), al-
lowing us to operate in a much broader threat regime.

A Estimates on the number of literals
Here we describe the steps we took to estimate the
number of literals in a 32-bit adder and a 32-bit mul-
tiplier when they are represented in the form of a 3-
CNF Boolean formula, as noted in §4.1. We examined an
adder circuit from [23] that adds two 1-bit binary num-
bers. We then calculated the number of literals in that
circuit after converting it to 3-CNF Boolean formula us-
ing the procedure from [28]. We found this count to be
at most 35 literals. In order to get a 32-bit adder, a naive
way is to use 32 1-bit ripple carry adders. Therefore, a
32-bit adder will have at most 1120 (= 35× 32) literals.

Next, we looked at a 4-bit multiplier circuit from [23]
and estimated an upper bound on the number of AND
gates and adders used by a 32-bit multiplier. A naive 32-
bit multiplier will use at most 2

∑31
i=1 i adders and 2×32

AND gates. We then estimated the number of literals that
would be present in the 3-CNF Boolean formula rep-
resentation of a 32-bit multiplier. This count is at most
34784 (= 2× 32 + (2

∑31
i=1 i)× 35).

B Background
Before presenting the core protocol, we describe some of
the tools used by the PCP construction. We adapt the no-
tation, terminology, and content here from [7]. Our pro-
tocol uses the PCP construction from [7] i.e., the con-
struction of PCP(O(log n), O(log4 n)) [7]. In this con-
struction, the verifier uses O(log n) bits of randomness
and examines O(log4 n) bits of the proof, where n is the
number of Boolean literals in the 3-CNF formula whose
satisfiability is being proven. Our notation is summarized
in Figure 4.

B.1 Arithmetization

Each clause in a Boolean formula, φ, in 3-CNF form,
can be represented by a polynomial of degree 3 over a
finite field. This can be done by replacing the Boolean
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Symbol Meaning

n Number of Boolean variables (≥ 3)
q a prime number (≥ 100dlog4 ne)
F finite field Zq = {0, ..., q− 1}
H subset {0, ..., |H| − 1} of F (|H| = dlog ne)
k number of variables of polynomial (d log n

log log n e)
Fd,k set of k−variate polynomials of degree d over field F.
~h A vector, and hi denotes the ith component of ~h.

Figure 4—Notation used in the description of our scheme

∨ with the field multiplication. Also, a Boolean variable,
u, is replaced by (1 − xu) and a negated variable, ū, is
replaced by xu, where xu is a variable that can take values
from the finite field.

Each clause of φ gets converted to one of the following
polynomials depending on the number of negated vari-
ables. Let x, y, z ∈ F, a finite field. Now, define:

p0(x, y, z) = (1− x)(1− y)(1− z)

p1(x, y, z) = x(1− y)(1− z)

p2(x, y, z) = xy(1− z)

p3(x, y, z) = xyz

A clause is said to be type j, if the clause contains j
negated variables. Assume that the negated variables al-
ways appear at the beginning of the clause, and the liter-
als in the increasing order of their indices. The remaining
variables appear after the negative variables but in the in-
creasing order of their indices.

Let χj
φ, for j = 0, 1, 2, 3 be the four clause-

characteristic Boolean functions such that χj
φ(i1, i2, i3) =

1, if and only if φ contains a clause of type j with vari-
ables ui1 , ui2 , and ui3 .

Now if there exists a vector, ~a, then to check if ~a
satisfies the Boolean formula, φ, one has to check if
the following four functions are identically zero for all
i1, i2, i3 ∈ {1, ..., n} and j = 0, 1, 2, 3:

f j
φ(i1, i2, i3) = χj

φ(i1, i2, i3)pj(ai1 , ai2 , ai3) = 0

B.2 Zero-tester polynomials

The problem of verifying whether a polynomial is zero at
every point in a finite field H3k can be checked efficiently
by using zero-tester polynomials [7]. This can be done by
checking whether the polynomial in consideration mul-
tiplied by a zero-tester polynomial (chosen uniformly at
random from a set of zero-testers) sums to zero in H3k.
Here we describe an example of a family of zero-testers
that is used by our scheme.

For any ~b ∈ F3k, define,

Ibi(xj) =
∑
h∈H

bi
hSH

h (xj)

R~b(x1, ..., x3k) = Π3k
i=1Ibi(xi)

Now, the set of polynomials, ∪~b∈F3k R~b, is a family of
zero-testers in F3k|H|,3k [7].

B.3 Selector polynomials

Selector polynomials are useful for constructing low-
degree extensions of functions. We define two of them
here (an univariate and a multivariate polynomial). For
any w ∈ H,

SH
w (z) = Πy∈H;y6=w(

z− y
w− y

)

Note that SH
w (w) = 1 and SH

w (x) = 0 for any x ∈ H,
and x 6= w.

For any ~h ∈ Hk,

S~h(~x) = Πk
i=1SH

hi
(xi)

Note that S~h(~h) = 1 and S~h(~x) = 0 for any~x ∈ H, and
~x 6= ~h.

C Verified computation scheme
Here we provide a complete description of our proto-
col mentioned in §3. In our scheme, the outsourcing of
a computation proceeds in two steps in the. In the first
step, called the compilation of the computation, the com-
putation in a high level language is converted into 3-CNF
Boolean formula representation using a compiler. In the
second step, called the execution of the computation, the
computation expressed in 3-CNF Boolean formula is ex-
ecuted to generate the output.

In the protocol that we are going to describe, we as-
sume that the verifier performs the compilation step and
outsources the compiled Boolean formula to the prover.
We begin by describing the computation performed by
the prover. We then describe the algorithms used by the
verifier to verify the proof generated by the prover.

C.1 The prover’s protocol

The protocol that we describe here is for a correctly
functioning prover. A malfunctioning prover can deviate
from this protocol arbitrarily.

At a high level, the prover obtains the verifier’s com-
putation, φ, in the form of a 3-CNF Boolean formula.
The verifier also specifies the input to the computation
i.e., values for some of the variables in the Boolean for-
mula. Let φ contain n variables. The prover first finds a
satisfying assignment to φ, after assigning the verifier-
supplied values to the corresponding variables of φ.

Once the prover finds the satisfying assignment, it en-
codes the satisfying assignment in a low-degree polyno-
mial over a finite field. The prover also constructs other
polynomials (partial-sum polynomials and a line table)
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Metric Count

Mult ≤ γ( 6(k|H|+1)
δ

log (k|H|+ 1) + 6k
δ
+ 4((9k|H|+ 2) log (3k|H|+ 1) + 3(k|H|+ 1) log (k|H|+ 1) + 4))

Add ≤ γ(36k2|H|2 + ( 6
δ
+ 36)k|H|+ 6

δ
k + 20)

Hash < γ(( 18
δ
+ 24)k log q + 72k2 log q + 12k + ( 12

δ
+ 8))

N/W < γ(( 18
δ
+ 24)ks log q + ( 12

δ
+ 24) log q + 72k2s log q + 6

δ
k|H| log q + 36k2|H| log q + 12k log q) + i + o

Figure 5—Upper bounds on verifier’s cost in terms of the count of computations: Mult (multiplication), Add (addition), Hash
(collision-resistant hash), and N/W (bits transferred over the network between the verifier and the prover) for verifying an outsourced
computation with a Boolean formula consisting of n literals. δ is set to 10−4 to get the error probability described in §4.1. The
functions are polylogarithmic in the size of the computation; the work done by the verifier and the network resources consumed
grow much slower than the size of the computation.

based on the assignment and the formula, φ. The prover
evaluates these polynomials at all possible points in their
domain. Once the prover evaluates these polynomials, it
sends commitments about them to the verifier. This is
done by constructing Merkle tree(s) whose leaf nodes
contain the evaluated values and sending the root(s) of
the Merkle tree(s) to the verifier.

Later, when the verifier starts the verification protocol,
the prover has to return the requested leaf nodes from
the Merkle tree(s). The prover also provides intermediate
hashes in the Merkle tree starting from the requested leaf
to the root of the Merkle tree. These hashes enable the
verifier to check if the returned leaf node is part of the
Merkle tree that the prover committed to. The commit-
ments sent by the prover disallows the prover to change
the proof generated in response to verifier’s queries.

(1) Encoding the assignment vector as a low-degree
polynomial. Let ~a be an assignment vector. ~a is a se-
quence of n bits. From the notation described in Figure 4
and the values specified for them, |Hk| ≥ n. Therefore a
k−tuple containing elements from H can uniquely iden-
tify a component in the assignment vector. Therefore the
assignment vector,~a can be thought of as a function from
Hk to {0, 1}. Let this function be fa.

The function fa is then converted to a low-degree poly-
nomial over a finite field, F by using the following set
of transformations. (When a function from Hk to {0, 1}
is transformed to a low-degree polynomial over a finite
field, F, its a k− variate polynomial with degree at most
k|H|.) Let pf ∈ Fk|H|,k be the low-degree polynomial. For
any ~x ∈ Fk,

pf (~x) =
∑
~h∈Hk

S~h(~x)fa(~h)

Since pf ∈ Fk|H|,k, it can be represented by using qk

words each of length dlog qe bits.

(2) Constructing the line table. The verifier would
need some auxiliary information to use the low-degree
encoding of the assignment vector. It is called a line ta-
ble. A line table describes the “restriction” of the low-
degree polynomial on all “lines” of Fk [7]. To construct
the line table, the prover performs the following step: for

each, ~b and~s ∈ Fk and x ∈ F, the prover finds (k|H|+1)

coefficients of P~b,~s where, P~b,~s(x) = pf (~b +~sx). Thus a
line table is a function from F2k to Fk|H|+1 (i.e., for all
~b and ~s ∈ Fk, there is an entry in the line table). This
line table can be represented by using q2k words each of
length (k|H|+ 1)dlog qe bits.

(3) Constructing the partial-sum polynomial tables
The prover also needs to provide more auxiliary informa-
tion about the assignment vector and the computation. In
particular, the auxiliary information enables the verifier
to check if the satisfying assignment found by the prover
actually satisfies the Boolean formula representation of
the computation. To this aim, the prover arithmetizes the
Boolean formula, as described in Appendix B.1.

Let f j
φ be the Boolean function that describes φ (defini-

tion for f j
φ can be found in Appendix B.1). It is a function

from H3k to {0, 1}. Now, f j
φ can be encoded as a low-

degree polynomial in F3k|H|,3k similar to the low-degree
extension of the assignment vector. Let gj

φ ∈ F3k|H|,k be
the encoded polynomial. For ~b, ~x ∈ F3k, let rj

~b
(~x) =

R~b(~x)gj
φ(~x).

The goal is to construct polynomials that help the ver-
ifier to check if

∑
h∈H3k rj

~b
(~h) = 0 for j = 0, 1, 2, 3 and

a randomly chosen ~b ∈ F3k (i.e., for a randomly chosen
zero-tester polynomial). Note that this condition is equiv-
alent to the condition for Boolean satisfiability described
in Appendix B.1.

In order to enable efficient verification of the above
condition by the verifier, the prover constructs partial-
sum polynomials for every ~b ∈ F3k, and j = 0, 1, 2, 3. It
is done using the following definition.

For i = 1, ..., 3k, the ith partial-sum polynomial gj
~b,i

: Fi

→ F, is defined as follows:

gj
~b,i

(x1, .., xi)

=
∑

yi+1∈H

∑
yi+2∈H

...
∑

y3k∈H

rj
~b
(x1, ..., xi, yi+1, yi+2.., y3k)

Now, the prover creates four tables, one for each
j = 0, 1, 2, 3. Table Tj contains, for all ~b ∈ F3k, for
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Algorithm 1 Low-degree test (adapted from [7])
1. Input: A k−variate polynomial, pf , and line-table,

Ta.
2. Output: True if pf is δ−close to a polynomial in

Fk|H|,k
3. Set δ ≤ 10−4

4. repeat
5. Select ~b, ~s ∈ Fk and t ∈ F {define P~b,~s(t) =∑k|H|+1

i=1 ti−1Ta(~b,~s)i, where Ta(~b,~s)i represents
the ith element of the (k|H|+1)−dimensional vec-
tor, Ta(~b,~s) ∈ Fk|H|+1}

6. if (P~b,~s(t) 6= pf (~b +~st)) then
7. return False
8. end if
9. until d 3

δ e times
10. return True

i = 1, ..., 3k, and for all c1, ..., ci−1 ∈ F, the coefficients
of the univariate polynomials gj

~b,i
(c1, ..., ci−1, x).

C.2 The verifier’s protocol

The verifier needs to know the 3-CNF Boolean formula,
φ from which it can obtain low-degree extension of the
function, χj

φ, for j = 0, 1, 2, 3 or it knows χj
φ, for j =

0, 1, 2, 3 from a trusted source.
At a high level, the verifier needs to perform the fol-

lowing steps:
V1 Check if the purported low-degree polynomial encod-

ing of the assignment is actually a low-degree polyno-
mial.

V2 Check if the purported assignment contained in the
low-degree polynomial actually satisfies the Boolean
formula representation of the computation.

V3 Check if the prover assigned the supplied input to the
input variables

V4 Extract the output from the low-degree encoding of
the assignment.

We now describes these high level steps in more detail.

(1) Low-degree test. First, the verifier checks if the pur-
ported low-degree polynomial constructed by the prover
is indeed a low-degree polynomial of degree k|H|. This
check is performed by the verifier by reading a constant
number of words from the low-degree extension of the
assignment and the line table (obtained by interactively
querying the prover. The verifier also checks if the re-
turned leaf nodes of the Merkle tree was present in the
committed Merkle tree at the beginning of the verifica-
tion protocol). Algorithm 1 sketches this test. Once this
algorithm returns TRUE, the verifier is convinced that the
polynomial constructed by the prover is δ−close to a
polynomial of degree k|H|.

Algorithm 2 Correcting a low-degree polynomial
(adapted from [7])

1. Input: ~x ∈ Fk, a k−variate polynomial, pf (pf is δ−
close to a polynomial, p ∈ Fk|H|,k) and line-table, Ta.

2. Output: p(~x)
3. Choose a random s ∈ Fk

4. Choose a random t ∈ F
5. if (P~x,~s(t) 6= pf (~x +~st)) then
6. return False
7. else
8. return P~x,~s(0)
9. end if

Algorithm 3 Sum-check test (adapted from [7])

1. Input: gj
φ ∈ F3k|H|,3k, R~b ∈ F3k|H|,3k and a table Tj

of partial-sum polynomials
2. Output: True if the product of gj

φ and R~b sum to 0
in H3k.

3. Read the coefficients of gj
~b,1

(x)

4. if (
∑

x∈H gj
~b,1

(x) 6= 0) then
5. return False
6. end if
7. Randomly choose li ∈ F for i = 1, ..., 3k
8. for i = 2 to 3k do
9. Read the coefficients of gj

~b,i
(l1, ..., li−1, x)

10. if (
∑

x∈H gj
~b,i

(x) 6= gj
~b,(i−1)

(li−1)) then
11. return False
12. end if
13. end for
14. if (R~b(l1, ..., l3k)× gj

φ(l1, ..., l3k) 6= gj
~b,3k

(l3k)) then
15. return False
16. else
17. return True
18. end if

(2) Sum-check test. Next, the verifier checks if the as-
signment encoded by the low-degree polynomial actually
satisfies the Boolean formula, φ. To this aim, the verifier
queries the partial-sum polynomial tables constructed by
the prover. This check is performed by using the sum-
check test.

In the sum-check test, the verifier first checks if the
partial-sum polynomial tables constructed by the prover
are “consistent” with one another at a randomly chosen
location. Later, the verifier chooses a zero-tester, uni-
formly at random, from the family of zero-testers (the
family that we described in Appendix B.2). Since the ver-
ifier either knows the Boolean formula or the low-degree
extension of χj

φ, it can compute gj
φ at any randomly cho-

sen location (Definition of gj
φ in Appendix C.1). This is

done by using three words from the low-degree extension
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of the assignment and the value evaluated from χj
φ at the

chosen random location.
The sum-check test checks if the product of the chosen

zero-tester and gj
φ at the chosen random location match

the value generated by the prover. The sum-check test is
performed once for each j = 0, 1, 2, 3, and is described
in Algorithm 3. Once the sum-check test passes, the ver-
ifier is convinced that the assignment contained in the
low-degree polynomial satisfies φ. (Since the verifier is
querying a polynomial that is only δ−close to the real
polynomial, it applies the correcting procedure described
in Algorithm 2 when reading from the low-degree poly-
nomial.)

(3) Check input and extract output. Next, the verifier
needs to check if the input variables of the purported as-
signment contain the verifier-supplied input. This can be
done by querying the low-degree polynomial encoding
of the assignment, and check if the input variables have
the right values. To extract the output, the verifier queries
the low-degree polynomial encoding of the purported as-
signment and extracts the values assigned to the output
variables.

D Analysis
As noted in §4.1, we present a tight upper bound on the
count of operations performed by a verifier for verify-
ing a computation. These counts are expressed as func-
tions of n, the number of literals in the 3-CNF Boolean
formula representation of the computation. We stepped
through each step of Algorithm 1, 2, 3, and counted the
number of multiplications, additions, hash computations
perfomed by the verifier. We also counted the number of
bits transferred between the verifier and the prover for
these Algorithms. These counts are function of γ, q, |H|,
s, and k, which are in turn functions of n (as shown in
Figure 4). Figure 5 shows these functions. Although not
expressed directly in terms of n, they are all polylogarith-
mic in n.
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